Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Shi-Yao Yang, ${ }^{\text {a }}$ La-Sheng Long, ${ }^{\text {a }}$ Jun Tao, ${ }^{\text {a }}$ Rong-Bin Huang, ${ }^{\text {a }}$
Lan-Sun Zheng ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathrm{b}}$ *
${ }^{\text {a State Key Laboratory for Physical Chemistry of }}$ Solid Surfaces, Xiamen University, Xiamen 361005, China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.055$
$w R$ factor $=0.135$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[nickel(II)- μ-4,4'-bipyridine- μ-terephthalato]

4,4'-Bipyridine(terephthalato)nickel(II), $\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8}-\right.\right.$ $\left.\mathrm{N}_{2}\right)$, exists as poly[μ_{2}-terephthalato- μ_{4}-terephthalato-bis[($\mu_{2}-4,4^{\prime}$-bipyridine)nickel(II)]]. Two independent terephthalato groups both occupy positions of $2 / m$ symmetry; one of these groups acts as a μ_{4} bridge and coordinates four different Ni atoms, one with each of its O atoms. The other one acts as a μ_{2}-bridge and serves as a bidentate chelate for two neighboring metal atoms. The Ni atom lies in a special position of m site symmetry.

Comment

4,4'-Bipyridine(terephthalato)nickel(II), $\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8^{-}}\right.\right.$ $\left.\mathrm{N}_{2}\right)$], exists as poly $\left[\mu_{2}\right.$-terephthalato- μ_{4}-terephthalato-bis[($\mu_{2}-4,4^{\prime}$-bipyridine)nickel(II)]]. Two independent terephthalato groups both occupy positions of $2 / \mathrm{m}$ symmetry; one of these groups acts as a μ_{4} bridge and coordinates four different Ni atoms, one with each of its O atoms. The other one acts as a μ_{2}-bridge and serves as a bidentate chelate for two neighboring metal atoms (Fig. 1). Consequently, the terephthalatenickel framework forms infinite two-dimensional layers parallel to the $a b$ plane of the crystal. The layers are linked into a three-dimensional network through the μ_{2}-bridging 4,4'-bipyridine ligands occupying a special position across the mirror plane. The compound is isostructural with the published cobalt analog, whose detailed description (Tao et al., 2000) also applies to the title compound.

(I)

Experimental

The compound was synthesized hydrothermally from nickel nitrate hexahydrate ($0.29 \mathrm{~g}, 1 \mathrm{mmol}$), terephthalic acid ($0.17 \mathrm{~g}, 1 \mathrm{mmol}$), 4,4'bipyridine dihydrochloride ($0.23 \mathrm{~g}, 1 \mathrm{mmol}$) and sodium hydroxide $(0.16 \mathrm{~g}, 4 \mathrm{mmol})$ in water $(18 \mathrm{ml})$. The mixture was placed in a 20 ml Teflon-lined stainless-steel vessel, which was heated at 493 K for 100 h . The vessel was cooled to room temperature at a rate of 6 K h^{-1}. The product was isolated in 25% yield.

Received 14 April 2003
Accepted 9 June 2003
Online 17 June 2003

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \quad D_{x}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=379.01$
Monoclinic, $C 2 / m$
$a=16.610$ (3) Å
$b=10.222$ (2) \AA
$c=11.237$ (2) \AA
$\beta=119.22(3)^{\circ}$
$V=1665.1(5) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.038$
\quad diffractometer	$\theta_{\max }=26.0^{\circ}$
ω scans	$h=0 \rightarrow 20$
Absorption correction: ψ scan	$k=0 \rightarrow 12$
\quad (North et al., 1968)	$l=-13 \rightarrow 12$
$T_{\text {min }}=0.696, T_{\text {max }}=0.877$	3 standard reflections
1790 measured reflections	frequency: 60 min
1728 independent reflections	intensity decay: none

1312 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.135$
$S=1.03$
1728 reflections
128 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0649 P)^{2}\right.} \\
&+1.5719 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.67 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.73 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ni1-O1	$1.999(3)$	Ni1-N1	$2.076(5)$
Ni1-O2	$2.149(3)$		
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 1^{\mathrm{i}}$	$111.4(2)$	$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 2^{\mathrm{i}}$	$61.3(2)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$154.7(1)$	$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 1$	$89.5(2)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2^{\mathrm{i}}$	$93.5(1)$	$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{ii}}$	$87.3(2)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1$	$93.4(1)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2^{i i}$	$176.3(2)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{ii}}$	$88.6(1)$		

Symmetry codes: (i) $x, 1-y, z$; (ii) $x, y, 1+z$.
The aromatic portion of one of the terephthalate groups (at the Wyckoff $2 d$ site of $2 / m$ symmetry), made up of atoms C5, C6 and C7, showed large displacement parameters for atoms C 6 and C 7 . H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and included in the subsequent refinement in the riding motion approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1988); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1997);

Figure 1
ORTEPII (Johnson, 1976) plot of a fragment of the structure of (I), with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $x, 1-y, z$; (ii) $x, y, 1+z$.]
program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: $S H E L X L 97$.

The authors thank the National Science Foundation of China (grant Nos. 20271044, 20273052 and 20021002), the Department of Science and Technology of China (No. 2002 CCA01600), the National Science Foundation of Fujian Province (grant No. E0110001), and the University of Malaya (No. F0717/2002 A) for supporting this work.

References

Enraf-Nonius (1988). CAD-4 VAX/PC Fortran System. Enraf-Nonius Delft, Scientific Instruments Division, Delft, The Netherlands.
Harms, K. (1997). XCAD4. University of Marburg, Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351539.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tao, J., Tong, M. L. \& Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669-3674.

